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Table 6. Calculated and observed intensities of Mg~Bg0 5, artificial 

Intensities estimated visually in the powder photograph (Co Kc~) 

hbl Io Fc 
011 m --25 
012 s 13 
012 s 14 
022 s --35 
102 s 59 
102 vs --50 
013 vw - -  3 
i12 m-- --21 
103 m-- --10 
i21 s --20 

032 s --63 
i13 m-- --15 
113 s 52 
114 vw --1 
i23 vw - -  5 
200 m+ --44 
210 m+ --20 
211 m+ 25 
202 vw -- 9 
124 m-- --15 

hkl Io Fc 
222 m-- 22 
221 w+ -- 12 
133 w+ -- 17 
i41 vw 5 
204 vw 6 
230 vw -- 9 
026 m --30 
231 vw -- 1 
207 m --24 

the  intensit ies of reflexions observed in the  powder 
photograph  of the artificial (triclinic) crystal  (Table 6), 
support ing our s ta tement .  

In  conclusion the  writer wishes to express his 
sincere thanks  to Prof. I to  for suggestion and guidance 
th roughou t  the work. 
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The formulae are given for the Fourier transforms of a number of helical structures; namely, 
a thin helical wire, a set of identical atoms spaced at regular intervals on a helix, and the general 
case of a group of atoms repeated by the operation of a non-integer screw. General predictions are 
made concerning the intensities of the X-ray diffraction pat tern of the synthetic polypeptide 
poly-7-methyl-L-glutamate, assuming tha t  its structure is based on the a-helix suggested by 
Pauling & Corey. 

1 .  I n t r o d u c t i o n  

The following calculations were under t aken  because 
of current  interest  in the  structures of certain synthet ic  
polypeptides.  The pre l iminary  X- ray  da ta  for these 
polypept ides  have been described by  Bamford,  H a n b y  
& Happey  (1951) and  thei r  infra-red behaviour  by 
Ambrose & El l io t t  (1951). Paul ing & Corey (1951) 

* Imperial Chemical Industries Fellow. 

have in terpre ted  the  structures of the two polypeptides 
which have so far given the  best X- ray  diffraction 
pictures, namely  poly-y-methyl-L-glutamate  and poly- 
~,-benzyl-L-glutamate, in terms of the a-helix de- 
scribed by Pauling,  Corey & Branson (1951). In  this  
s t ructure  the residues repeat  along the  helix with a 
spacing of about  1.5 /~ in the chain direction, and 
Perutz  (1951) has found t h a t  a strong meridional  
reflexion of spacing 1.5 /~ is given by poly-~,-benzyl- 
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r.-glutamate. More recently this has also been observed 
by  Bamford, Brown, Elliott, Hanby  & Trotter (1952) 
for poly-~,-methyl-L-glutamate and for a number of 
other.polypeptides. As Perutz (1951) has also found 
tha t  a 1.5 A reflexion is given by certain proteins, 
i t  is possible tha t  all these substances have basically 
a common structure. I t  is therefore important  to 
establish the actual structure beyond doubt for at  
least one of them. 

The other general property of the s-helix is tha t  it 
repeats exactly only after a number of turns. For 
poly-~-methyl-L-glutamate, which has a repeat of 
27 A in the chain direction, Pauling & Corey (1951) 
have suggested a helix of 18 residues, which goes 
round five times in 27 A. The X-ray evidence is con- 
sistent with a hexagonal unit cell, with one chain 
tier lattice point, so tha t  all the chains are in identical 
orientations. The unit cell for poly-~-benzyl-L- 
glutamate is only pseudo-hexagonal and has not yet  
been definitely established. 

We have calculated first the transform of a thin 
helical wire. We have then derived the transform of a 
set of identical point atoms spaced at  regular intervals 
on a single helix. We have next derived the formulae 
for the structure factors for the general case of a 
group of atoms, with each atom of the group repeated 
regularly on a helix. From these results we have been 
able to make certain general predictions, par t ly  of a 
statistical nature, about the intensities to be expected 
from a helical structure containing a number of 
different atoms. We have considered poly-N-methyl- 
r.-glutamate as a possible example, as it gives the 
simplest X-ray photograph. 

Preliminary accounts of the application of the theory 
(Cochran & Crick, 1952) and of the experimental data 
(Bamford et al., 1952) have already been published. 
The theory was also derived independently and simul- 
taneously by Dr A. R. STOKES (private communication). 

2. T h e  t r a n s f o r m  of a u n i f o r m  he l i x  

We calculate first the Fourier t r ans form (or con- 
tinuous structure factor) of a uniform helix (for 
instance, a wire of infinitesimal thickness) of infinite 
length, radius r and axial spacing P. If the helix is 
defined by the equations 

x - -  r cos (2nz/P), ] 

y : rsin (2r~z/P), i (1) 
Z - - - Z ,  

(see Fig. 1), the value of the Fourier transform at a 
point (~, ~, $) in Fourier (reciprocal) space is given by 

T(~, ~, ~) = I exp [2~ti(x~-y~7~-z~) ]dV , 

where d V, is a volume element of the helix. Using (1), 
and the fact tha t  d V. is proportional to dz, 

T(~,V, ~) 
P 

= exp 2~i r~cos2~  ~ + r ~ l s i n 2 ~ - z ~  dz, 
w0 

apart  from unimportant  constants of proportionality. 
This result can be written as 

T(R, v2, ~) 

where R" ----- ~2+~, and tan y~ = ~1/~. 

2 

, (o) (b) 

Fig. 1. (a) Cartesian (x, y, z) and cylindrical-polar (r, ¢, z) co- 
ordinates of a point on a helix. (b) Corresponding coordinates 
of a point in reciprocal space. 

The integral (2) vanishes unless $ = n/P, where n 
is an integer. This corresponds to the fact tha t  the 
X-ray scattering from a helix which has an exact 
repeat after a vertical distance P, is confined to 
layer-lines at heights $ = n/P in reciprocal space. 
Accordingly, we write (2) as 

This integral may  be evaluated by using the identi ty 
2~ 

f exp (iX cos q)) exp (in~)dq~ = 2einJ,~(X) , 
w 0 

taking X = 2~Rr and ~o = 2~z/P. 

n= O "in(X) 

2 1 . . . . . . . . . . .  

4 3 

10 9 

~ =  0 1 2 3 4 $ 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Fig. 2. I l lus t ra t ion  of Bessel funct ions.  (Reproduced b y  k ind  
permission of the  publishers f rom Tables of Functions b y  
J a h n k e  & Erode.  New York: Dover  Publicat ions.)  
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- - 5  - - 4  - - 3  
~ 3  - -  - -  - -  

- - 2  - -  + 1 4  

0 + 1 8  - -  

I - -  ~ + I 1  

3 - -  + 1 5  
4 ~ - -  - -  

5 + 1 9  ~ 
6 - -  - -  + 1 2  
7 ~ ~ 

8 - -  + 1 6  
9 ~ ~ 

10 + 2 0  ~ 
11 - -  ~ + 1 3  
12 ~ ~ 
13 ~ + 1 7  
14 ~ ~ 
15 + 2 1  ~ 
16 ~ ~ + 14 
17 - -  - -  
1 8  - -  + 1 8  - -  
19 - -  ~ 
20  + 2 2  ~ 

Table 1. Values of n for poly-y-methyl-L-glutamate 
K - - m - - >  

- -2  --1 0 W1 @2 @3 -}-4 @5 @6 
- -  + 3  . . . . . . .  

. . . .  4 . . . . .  22 
+ 7  . . . . .  11 - -  - -  - -  

- -  - -  0 . . . . .  18 - -  

. . . . .  7 . . . .  

- -  + 4  . . . . .  14 - -  - -  

. . . .  3 . . . . .  21 
+ 8  . . . . .  10 - - -  - -  

~ + 1  . . . . .  17 
. . . . .  6 . . . .  

- - ~ 5  . . . . .  1 3  ~ 

. . . .  2 . . . . .  20  
+ 9  . . . . .  9 - -  - -  

~ + 2  . . . . .  16 
. . . . .  5 . . . .  

+ 6  . . . . . .  1 2  ~ 

. . . .  1 . . . . .  19 
+ 1 0  . . . . .  8 - -  - -  - -  

- -  + 3  . . . . .  15 
. . . . .  4 . . . .  

+ 7  . . . . .  I I  - -  

~ - -  0 . . . . .  1 8  

+ 1 1  . . . . .  7 - -  ~ 
- -  + 4  . . . . .  1 4  

The result is 

T(R, % n/P) ----- J~(2z~Rr) exp [in(~+½z~)] , (3) 

where Jn denotes the nth-order Bessel function. 
This gives the amplitude and phase of the X-ray  

scattering on the nth  layer line. The function T has 
two notable features: (i)]T] : [Jn(2zlRr)[ is inde- 
pendent of yJ, tha t  is, the modulus of the transform 
has cylindrical symmetry.  (ii) For small values of 
27~Rr, IT I decreases rapidly as n increases. This can 
be seen clearly from the illustration of Bessel functions 
given in Fig. 2. This figure also enables one to see 
where the transform will have maxima. 

the E-axis, where it assumes a value which we may 
take to be unity.  The process of convolution therefore 
reduces in this case to setting down the transform of 
the continuous helix with its origin placed at  each of 
the points (0, 0, 0), (0, 0, + l / p ) ,  (0, 0, --1/p), 
(0, 0, +2/p) etc. in turn, and taking the sum (see 
:Fig. 3). The result is the transform of a discontinuous 
helix, and can be seen to be finite only in planes at  
height 

-- n / P + m / p ,  (4) 

on which it assumes the value Jn(2xeRr) exp [in(y~ + ½z)]. 
Like n, m can assume any integral value, positive or 
negative. If P/p cannot be expressed as a ratio of 

3. The  t r a n s f o r m  of a d i scon t inuous  hel ix  

We define a discontinuous helix as a set of points 
occurring with a vertical spacing p on a continuous 
helix. X-ray  scattering is now imagined to take place 
from these points only. The scattering from a set of 
identical atoms in this configuration can be found by 
multiplying the transform of the set of points by the 
atomic scattering factor. 

Consider a function H which is zero everywhere 
except on a continuous helix, where it assumes the 
value unity,  and another function K which is zero 
everywhere except on a set of horizontal planes of 
spacing p, where it assumes the value unity. The 
product K H  of these two functions is a discontinuous 
helix. I t  follows that  the transform of KH is the trans- 
form of K, convoluted (folded) with tha t  of H. The 
transform of H was given in the previous section 
(equation (3)); tha t  of//7 is easily proved to be zero 
except on an infinite set of points of spacing 1/p along 

o7-2, 

/,7,/=, 

n=2 
rt=l 

n =  -1 

'".3_'.5 
i / = - 2  

'(a) (b) (c} 

F i g .  3. (a) i l l u s t r a t e s  t h e  f a c t  t h a t  t h e  t r a n s f o r m  of  a h e l i x  of 
a x i a l  s p a c i n g  P is f i n i t e  o n l y  i n  p l a n e s  a t  h e i g h t  $ ---- n/P ,  
w h i l e  (b) i l l u s t r a t e s  t h e  f a c t  t h a t  t h e  t r a n s f o r m  of  a s e t  of  
p l a n e s  of s p a c i n g  pp is f i n i t e  o n l y  a t  p o i n t s  (0, 0, $) w i t h  

= re~t>. (c) is o b t a i n e d  b y  s e t t i n g  (a) d o w n  w i t h  i t s  o r i g i n  
a t  h e i g h t  ~ = 0, a n d  a g a i n  a t  $ = 1/pp. I t  is t h e r e f o r e  part 
of t h e  t r a n s f o r m  of a d i s c o n t i n u o u s  h e l i x ;  t h e  c o m p l e t e  
t r a n s f o r m  is o b t a i n e d  b y  s e t t i n g  (a) d o w n  w i t h  i t s  o r i g i n  
a t  every p o i n t  ~ ---- re~i) in t u r n ,  a n d  is t h e r e f o r e  f i n i t e  o n l y  
i n  p l a n e s  a t  h e i g h t  ~ ---- n / P + m / t  ) .  
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whole numbers,  planes at  height  niP+m/p ,  for all  
values of n and of m, fill the  whole of reciprocal space. 
This case is considered in  a later  section. If, on the  
other hand,  PIP can be expressed as a ratio of whole 
numbers,  the t ransform is confined to a set of planes. 
For  example,  in the par t icular  case corresponding to 
poly-~,-methyl-L-glutamate, P - - 5 . 4  A, p = 1.5 /~ 
and PIP = 18/5. F rom (4) we then  have 

5P~ ----- 5 n + 1 8 m  

= 1 (say) .  (5) 

The t ransform is, in this  case, confined to layers for 
which ~ ---- n l P + m l p  = lIc A -1 with c = 27 A, corre- 
sponding, of course, to the fact tha t  the discontinuous 
helix now has an exact  repeat  after 27 /~. For  any  
one value of 1 the t ransform of the discontinuous helix 
is now given by  

( ; )  F R, , e , ;  = ~ - ' f  R,~0, , (61 
n 

the  sum being over all values of n which are solutions 
of (5). For  example,  when 

l = 0, n . . . .  , --36, --18, 0, +18 ,  +36 ,  . . . ,  

and when 

l----1, n . . . . .  --25, --7,  +11 ,  +29 ,  +47 ,  . . . .  

The difference between successive values of n is 
always 18. 

In  Table 1 we have listed the values  of n for values 
of 1 between --3 and +20 ,  and values of m from 
--5 to + 6 ,  for the case of poly-~,-methyl-L-glutamate. 
This includes all values of n up to 18 for the layer- 
lines considered. 

The same result for the t ransform of a discontinuous 
hel ix  which has an exact  repeat  after a number  of 
turns of the helix have been made,  can be obtained 
by  writ ing down the structure-factor equat ion in the 
normal  way, and expanding it  as a series of Bessel 
functions. The method  we have  given is more general, 
and makes the solution easier to grasp. 

As an  example  of (6) we can take 

F(R, ~, O) -~ Jo(2rtRr)+Jls(2zrRr) exp [18i(~+½zr)] 

+ J - x s  (2z~Rr) exp [-- 18 i (~p+½g)]+ . . .  

-- Jo(2rtRr)--2Jls(2zrRr) cos 1 8 ~ +  . . . .  

The departure from cylindrical  symmet ry  involves 
only the terms Jxs(2~tRr) etc., which will usual ly  be 
negligible compared with J0 (2~Rr). 

Again 

$'(R, ~p, 1/27) ~-- J_~(2zrRr)exp [ - -7 i (~+½~)]  

+ Jn (2~Rr )  exp [1 li(~o + ½zr)] + . . . .  

On evaluat ing IF[ in this  case, i t  is found to have  an 
18-fold axis of symmetry .  To the extent  t ha t  all other 

terms can be neglected compared with J~, i t  has  
cylindrical  symmet ry .  

Again, 

F(R, y~, 5/27) = Jl(2zrRr) exp [i(~p+½Jt)] 

+J_lT(2rtRr) exp [--17i(yJ+½zr)] 

+ J19 (2zrRr) exp [19i(vJ+ ½~)] + . . . .  

Here IF] has almost  complete cylindrical  symmet ry ,  
as only the first te rm is appreciable,  except for 2ztRr 
greater t han  about  15. I t  can be shown tha t  however 
m a n y  terms are involved, ]FI has an  18-fold axis of 
symmet ry  over the entire diffraction pat tern.  

I t  is of interest  to consider what  happens  if the helix 
is s l ightly deformed, so tha t  i t  repeats exact ly  only 
after a larger distance.* For  example,  suppose the 
a-helix, instead of having  3.60 residues per turn,  had  
about  3.58, so tha t  the structure repeated after 17 
turns  containing 61 residues. We can most  easily see 
what  happens  by  fixing a t tent ion on a given Bessel 
function, whose position is defined by  n and m. 

Now since 
n m ~=~+-, 

P 

and if d(1/P) and d( l /p  ) are small,  the  Bessel funct ion 
under  consideration will move only a smal l  dis tance 
in  reciprocal space, especially if n and  m are Mso small.  
As the true uni t  cell becomes larger, and the layer  
lines more closely spaced together, Bessel funct ions 
which previously occurred at the  same level will now 
be dis t r ibuted over different layer lines. As has  been 
stated, if P and p are incommensurable ,  the t ransform 
fills the whole of reciprocal space, but  i t  can do so only 
by  employing Bessel functions of very  high order, 
which in practice can be ignored. The more im- 
por tant  Bessel functions of lower order will occur very  
close to positions g i v e n  by taking commensurable  
approximat ions  to P and p. Consideration of the full  
expressions given in the next  section (equation (7)) 
shows tha t  the values of the terms relevant  in practice 
are only changed infini tesimally.  The precision of the  
determinat ion of P and p is of course l imited by  ex- 
per imenta l  error. If  the structure were disordered, so 
tha t  the effective local values of P and p varied, one 
would expect diffuse layer lines in the region corre- 
sponding to the average values of P and p. This 
appears to be the case for certain of the co-polymers 
(Bamford et al., 1952). 

4. S t r u c t u r e - f a c t o r  ca l cu la t ion  

We shall  now consider how numerical  calculations can 
be made when exact  coordinates are assumed for all  

* The ideas in this section were clarified during discussion 
with Dr L. Brown. 
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the atoms in a helical structure. We have to consider 
how the contributions of a number of sets of atoms 
on helices of different radii, and which may  star t  off 
with the first atoms' not at x ~ r, y ~ 0, z ~ 0, but  
at  x -- r cos ~, y ~ r sin ~, z ~ z, are to be combined. 
The transform of a discontinuous helix, start ing with 
the last-mentioned coordinates, is 

exp [i(--nq~+ 2rdz/c)] . 

This follows from the fact tha t  the displacement of 
the first point to z in a cell of length c corresponds 
to a multiplication of the transform by the factor 
exp [2rdlz/c]. The rotation of the helix through an 
angle ~, to bring the first point to the coordinates 
given above, results in its transform being rotated in 
the same direction, and by the same amount. A point 
then at (R, % () obviously came from (R, yJ--~, (). 
Hence if a particular term in the series for F had 
the form Jn(2rlRr)exp [in(w-~½z)], it now becomes 

J,~(2~Rr) exp [i(ny;--nq~-~½nrl+2~lz/c)] . (7) 

In  poly-~,-methyl-L-glutamate there are ten atoms per 
residue, and each chain consists of sets of identical 
atoms occurring at  the points of ten different dis- 
continuous helices. I t  follows tha t  the structure factor 
Fc of one such unit, for 1----- 1 for example, is given 
by 

Fc(R, % 1/c) -~ 
10 

- ~f iJT(2r~Rrj)  exp [i{--7(~+½~)-~7~j~-2~zj/c}]+ 
/=1  

10 

,~ , f i Jn(2~Rr i )  exp [i {11 (~-~ ½~)-- 11 ~i~- 2rezi/c}]-~ . . . .  
i=1  

The general expression is 

Fc(R, 9, Z/c)  = 

~ - ' f i J n ( 2 z R r i )  exp [i(n(y~--Ti-~½~)~-2rdzi/c}]. (8) 
n i 

For  the purposes of computation it would be useful 
to graph the functions 

C~ ----- cos (nyJ)Jn(2reRr), 

S n --~ sin (nv/)Jn(27~Rr) . 

If we write (7) in the form 

J~(2xeRr) exp [in(v2+ e)], where e : ½z--q~+27dz/nc, 

then (7) becomes C~(v2+ e)-~iS~(v2~-e). If, for example, 
one prepares a contour map of Cn against cylindrical 
coordinates (2x~Rr, yj), one can then place over it a 
grid whose intersections correspond to the reciprocal- 
lattice points for the value of r appropriate to a 
particular set of atoms. By turning this grid to the 
angle e (which one has to compute) one can read off 
Cn(y~-e) for all the reciprocal-lattice points. This 
process can be repeated for each atom, and the 

contributions summed; similarly for Sn(~+ e). This is 
particularly valuable when the phases of the Fourier 
components are required. 

The theory can easily be extended to cover cases 
where there is more than one chain per lattice point 
by considering a chain displaced from the origin to 
the point (x0, Y0, %) and turned about its axis by an 
angle qo. The contribution of this chain to the trans- 
form is obtained by multiplying the general expression 
(7) by a factor 

exp [2rd(hxo/a + kyo/b + lzo/c)] exp [--  inq~o] . 

I t  is interesting to note tha t  the helix which con- 
sists, chemically, of one polypeptide chain, is in fact 
only one of the possible solutions which are consistent 
with the general helical arrangement.  F o r  example, 
a discontinuous r ight-handed helix which has p :  1.5/~, 
and makes 5 turns in 27 /~ may be regarded as two 
separate but  intertwining left-handed discontinuous 
helices, each with p : 3.0 /~ and making 4 turns in 
27 /~. Such structures will generally not be stereo- 
chemically feasible. Conversely, if one has to consider 
a structure which actually does consist of several 
chains intertwined, it is convenient for computation 
to imagine the residues, however they may be con- 
nected chemically, to be associated with a single 
'primitive'  helix, which is chosen as the one for which 
both the z translat ion and the angle of rotat ion be- 
tween successive residues have the smallest values. 
All calculations can be made in terms of this one helix, 
using the theory given above. 

5. Application to poly-y-methyl-L-glutamate 

As we have seen, we may  imagine the infinite poly- 
peptide chain as made up from a number of sets of 
atoms, each set consisting of atoms occurring at inter- 
vals p on a helix of axial spacing P and radius r. The 
number of sets of atoms composing one chain will be 
equal to the number of atoms per residue of the 
polypeptide; each set will in general occur on a helix 
of different radius, and if we take one helix as a 
standard, the others will in general be rotated and 
translated relative to the first. This helical con- 
figuration (defined by P and p) of every set of atoms 
is in itself enough to enable us to make general 
predictions about the intensities of the X-ray  re- 
flexions to be expected from such a s t ruc tu reh the re  
is no need for detailed assumptions about the exact 
relative positions of atoms belonging to the same 
residue to be made. This is a situation which occurs 
very seldom in X-ray  analysis; usually a crystal- 
structure problem must  be solved in detail before 
anything at  all can be said about the atomic arrange- 
ment, and conversely only when the structure is 
known completely can the intensities of the X-ray 
reflexions be calculated. In this case, the basis of the 
predictions is tha t  reflexions to which all sets of atoms 
make only a small contribution will be absent, whereas 
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reflexions to which a number of sets may contribute 
are likely to be strong. The contribution of the j t h  
set of atoms is of course the sum over a few values 
of n of terms of the form (7), so that, if the values of 
J~(2xRr) are very small for all values of r which 
occur in the structure, the corresponding reflexion 
must be absent. When this quantity is large for many 
of the values of r which we might expect to be present, 
the corresponding reflexion is not necessarily strong, 
as the phase part of the expression (7) may effect a 
cancellation when the contributions from all sets are 
summed. On the average, however, Such reflexions 
will be strong. 

We assume, therefore, that  poly-~,-methyl-L-glu- 
tamate is based on the a-helix proposed by Pauling 
& Corey, so that  the structure of one infinite chain 
can be produced from one residue by the operation 
of a non-integer screw of 100 ° and 1.5 A. We now 
use the property of Bessel functions, illustrated in 
Fig. 2, that  for small values of the argument 2gRr, 
the function Jn(2gRr) is very small when n is large. 
The greater the value of n, the g~reater 27~Rr can be 
before Jn(2ztRr) becomes appreciable. Now, whatever 
the precise form of the side groups, no atom can lie 
further than about 8 A from the axis of the helices 
if reasonable bond lengths are assumed. For any set 
of atoms making up the main chain (including the 
fl-carbon atom)--and this accounts for half the to ta l - -  
r is not greater that  3.3 A, according to Pauling & 
Corey (1951). The part of the transform covered by 
the observed diffraction data does not extend beyond 
R = 0.35 A -1 (1 # 0), so that  in considering the 
contribution of any set of atoms of the main chain 
to any reflexion, a value of 27~Rr greater than 7.2 will 
not occur. Even when the contributions of atoms of 
the side groups are considered, 2zRr  will not exceed 
17. The implications of this can be seen by considering 
the reflexions on the first layer, which are contributed 
to by Bessel functions of order 7 and 11. For the 
reflexion (1011), R = 0.097 A -1, and J~(2x~Rr) is 
quite negligible for r < 7 J~. Only the outermost atoms 
of the side groups could contribute weakly to this 
reflexion. A similar calculation shows that  the con- 
tribution of atoms of the main chain to any reflexions 
on this layer for which R < 0.35 /~-~ is always very 
small, although atoms of the side group could make 
a small contribution. No reflexions are observed ex- 
perimentally on this layer. Intensities on the second 
layer depend on J4(2~Rr), so that  low-order re- 
flexions are again likely to be weak, and the main 
contributors to reflexions (1122) and (2022) must be 
the atoms of the side groups. The third layer involves 
Ja(2gRr), and we might expect to find some reflexions 
on it, while on the  fourth the intensities depend on 

Js(2zrRr), so we would expect nothing except possibly 
at comparatively large values of R. On the other hand, 
1 -= 5 is contributed to by Jl(2~Rr),  and many sets 
of atoms can make large contributions. In short, we 
can make the general prediction that  'layer lines to 
which only high-order Bessel functions contribute will 
be weak or absent, and those to which low-orders 
contribute will be strong' (Cochran & Crick, 1952). 
The experimental data of Bamford et al. (1952) agree 
with this prediction in a striking manner, no reflexion 
appearing on any layer line unless a Bessel function 
of order 4 or less is involved. In fact the agreement is 
too good, and suggests that  the upper limit to the 
value of 2~Rr is more nearly 7 than 17, that  is, that  
the effect of the atoms of the side groups is in some 
way reduced. This could be due to the side groups 
having a greater amplitude of thermal vibration, or 
being more disordered, than the atoms of the main 
chain. On the other hand, the assumption that  the side 
groups are all equivalent, i.e. that  both the main 
chain and side groups have an 18-fold screw axis, 
may not be correct. The space group, which is probably 
C61, requires only that  every third side group should 
be equivalent. If all are equivalent, their relationship 
to neighbouring parts of their own chain is the same 
for each, but their relationship to neighbouring parts 
of adjacent chains falls into three different types. 
Thus there is no compelling reason for all the side 
groups to have the same orientation relative to the 
main chain. 

The evidence thus suggests very strongly that  the 
main chain of poly-~,-methyl-L-glutamate is based on 
the a-helix, or a very similar helix, but it is not 
possible by this rather general approach to decide 
whether the side groups also conform strictly to this 
arrangement. 

In conclusion, we would like to express our ap- 
preciation of the interest shown in this work by Prof. 
Sir Lawrence Bragg, Prof. J .M.  Robertson and Dr 
M. F. Perutz. 
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